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Summary. Recently, a provable Delaunay meshing algorithm called QMesh has
been proposed for polyhedra that may have acute input angles. The algorithm guar-
antees bounded circumradius to shortest edge length ratio for all tetrahedra except
the ones near small input angles. This guarantee eliminates or limits the occur-
rences of all types of poorly shaped tetrahedra except slivers. A separate technique
called weight pumping is known for sliver elimination. But, allowable input for the
technique so far have been periodic point sets and piecewise linear complex with
non-acute input angles. In this paper, we incorporate the weight pumping method
into QMesh thereby ensuring that all tetrahedra except the ones near small input
angles have bounded aspect ratio. Theoretically, the algorithm has an abysmally
small angle guarantee inherited from the weight pumping method. Nevertheless, our
experiments show that it produces better angles in practice.

Key words: mesh generation, computational geometry, Delaunay refinement, sliver,
weighted Delaunay triangulation.

1 Introduction

Meshing a polyhedral domain with well shaped tetrahedra occurs as an important
problem in finite element methods. The aspect ratio of a tetrahedron is the ratio
of its circumradius to its inradius. A tetrahedron has bounded aspect ratio if all
the face angles and dihedral angles are greater than a constant threshold. A weaker
measure is the circumradius-edge ratio: ratio of the circumradius to the shortest
edge length. If the tetrahedra have bounded circumradius-edge ratio, only one class
of poorly shaped tetrahedra may remain and they are known as slivers [CDET99].
Eliminating slivers is a challenge in mesh generation.

Three main paradigms are known for polyhedra meshing: octree based [MV00,
SG91], advancing front [Lo91b, L96], and Delaunay based [ACYD05, B89, BGL00,
WH94] methods. The Delaunay based methods are popular in practice [O98], per-
haps due to their directional independence and good quality meshing in general. In
this paper, we focus on the Delaunay based methods that can provide theoretical
guarantees on the quality of tetrahedra.
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Based on Ruppert’s 2D Delaunay refinement paradigm [Rup95], Shewchuk pre-
sented an algorithm that constructs a Delaunay mesh with bounded circumradius-
edge ratio [Shew98]. Unfortunately, the algorithm may not recover the input bound-
ary when some input angle is acute. Although Shewchuk [Shew00], Murphy, Mount
and Gable [MMG00], and Cohen-Steiner, de Verdière and Yvinec [SVY02] subse-
quently proposed algorithms that can handle acute input angles, no guarantee on
the tetrahedral shape was provided. A significant theoretical progress was obtained
by Cheng and Poon [CP03], who proposed an algorithm that guarantees bounded
circumradius-edge ratio everywhere in the mesh. However, given the complexity
of the algorithm, its practicality is doubtful. Recently, Cheng, Dey, Ramos, and
Ray [CDRR04] presented a simple algorithm QMesh and an implementation for
polyhedra. All tetrahedra have bounded circumradius-edge ratio, except those near
small input angles. There are very few such tetrahedra as observed in the experi-
ments. There are several innovations in this algorithm: local feature sizes are only
needed at vertices with small input angles, explicit protecting regions for the input
edges are no longer needed, and the splitting of non-Delaunay triangles in recov-
ering the input boundary (instead of splitting non-Gabriel triangles alone). These
new features ease the implementation tremendously and help to keep the mesh size
small. Subsequently Pav and Walkington [PW04] proposed an algorithm for han-
dling non-manifold boundaries with very similar guarantees.

All of the algorithms mentioned so far focused on ensuring bounded circumradius-
edge ratio, which eliminates all types of poorly shaped tetrahedra but slivers. The
work of Chew [Chew97], Cheng et al. [CDET99], and Edelsbrunner et al. [E00] are
the first theoretical results on sliver elimination, albeit for point sets only. Edelsbrun-
ner and Guoy [EG02] experimented with the sliver exudation technique in [CDET99].
They demonstrated that the technique is more effective in practice than what the
theory predicts. Later, Li and Teng [LT01], and Cheng and Dey [CD03] presented
algorithms for meshing piecewise linear complex with well-shaped tetrahedra. But
only non-acute input angles were allowed.

In this paper, we incorporate the weight pumping technique [CD03, CDET99]
into QMesh [CDRR04] to purge slivers. In essence, we make the following contri-
butions in this paper.

Theoretical: We present a Delaunay meshing algorithm for polyhedra possibly
with acute input angles. It guarantees bounded aspect ratio for all tetrahedra ex-
cept the ones near small input angles. No Delaunay meshing algorithm with such
guarantees is known to date. The new algorithm changes the mesh connectivity us-
ing the weighted Delaunay triangulation. Since weight pumping may challenge the
input boundary, we first extend the algorithm in [CDRR04] to prepare for it. The
extended algorithm offers the same guarantee that remaining skinny tetrahedra are
near small input angles. Then the algorithm assigns proper weights to sliver vertices
to purge them. Most slivers are eliminated except those near small input angles.

Practical: The weight pumping procedure of Cheng and Dey [CD03] needs the local
feature sizes at the sliver vertices which are expensive to compute. We improve upon
this by showing that it suffices to work with the nearest neighbor distances of the
sliver vertices. This is readily available in a Delaunay mesh and eases the weight
pumping implementation substantially.

Experimental: We experimented with an implementation of the proposed algo-
rithm. In our experiments, we set the circumradius-edge ratio threshold at 2.2 and
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dihedral angle bound for slivers at 3◦. This means that the algorithm tries to elim-
inate any poorly shaped tetrahedron with circumradius-edge ratio more than 2.2
and any sliver with dihedral angle less than 3◦. Our experiments show that there
are extremely few tetrahedra in the output that violate these thresholds. The plot
of the distribution of the face and dihedral angles shows that over 90% of the angles
are more than 10◦ and many of them are between 15◦ and 30◦.

2 Input domain

The input domain is a polyhedron bounded by a 2-manifold. The 2-manifold is
the underlying space of a piecewise-linear-complex called PLC defined as follows. A
vertex v is a point in R3; its boundary ∂v is v itself. An edge e is a closed segment
between two vertices v1 and v2 where its boundary is ∂e = {v1, v2}. A facet is a
subset of the plane bounded by a collection simple polygonal cycles made out of
vertices and edges. A PLC is a collection of vertices, edges, and facets that intersect
properly, i.e., the intersection of any two elements is either empty or a collection of
lower-dimensional elements. Although this definition disallows special cases such as
isolated vertex or a dangling edge in the middle of a facet, we believe that, after
adding extra steps to deal with special cases, our algorithm works for any input
PLC as long as its underlying space remains a 2-manifold.

Also, we make a modification to the input domain by encompassing the original
input polyhedron with a large enough bounding box. Our algorithm meshes the
interior of the box conforming to the input polyhedron and keeps only the tetrahedra
covering the interior of the input polyhedron. Let B denote the bounding box. We
use P to denote the PLC of the input polyhedron together with B. Two elements
in P are incident if one is in the boundary of the other. We call two elements of P
adjacent if they intersect.

Our algorithm works with two types of input angles. For any two incident edges
of a vertex u, we measure the angle between them. We call such angles edge-edge
angles. For any edge uv and a facet F incident to u such that uv is neither incident
on F nor coplanar with F , the angle between uv and F is min{∠puv : p ∈ F, p = u}.
We call such angles edge-facet angles. At an edge of P, we measure the internal and
external dihedral angles at the edge. Throughout this paper, we use φm to denote
the minimum input angle in P. We call an edge sharp if the internal or external
dihedral angle at the edge is acute. We call a vertex u sharp if an edge-edge angle
or an edge-facet angle at u is acute, or if u is an endpoint of a sharp edge.

The local feature size f(x) for P at x ∈ R3 is the radius of the smallest ball
centered at x intersecting two non-adjacent elements of P.

3 Weighted Delaunay and shape measure

We denote a weighted point at location x by x and we use X2 to denote its weight.
The weighted distance between x and y is π(x, y) = x − y 2 − X2 − Y 2. We say
that x and y are orthogonal if π(x, y) = 0. One can view x as a sphere centered at
x with radius X. Then x and y are orthogonal if the two spheres intersect at right
angle. An orthosphere of k, 2 ≤ k ≤ 4, weighted points x1, · · · , xk is a sphere y
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such that π(xi, y) = 0 for 1 ≤ i ≤ k. The orthosphere is unique for four weighted
points in general position. The center and radius of the orthosphere are known as
orthocenter and orthoradius.

Given a weighted point set, a tetrahedron spanning four points is weighted De-
launay if the weighted distance between its orthosphere and any other weighted
point is non-negative. The weighted Delaunay triangulation is the collection of all
weighted Delaunay tetrahedra along with their triangles, edges and vertices. It can
be built using an incremental algorithm [ES96] and CGAL has a library function for
its construction [cgal]. We will be interested in the special case where the weights are
zero or small. Specifically, the weight of v can take on a value between 0 and ω0N(v),
where ω0 ∈ [0, 1/3) is a constant to be defined later and N(v) is the nearest neigh-
bor distance of v. In this case, we say that the point set has weight property [ω0].
If all weights are zero for a vertex set V, we get the standard unweighted Delaunay
triangulation DelV.

The volume of a tetrahedron Δt in a normalized sense captures its shape qual-
ity. We define the orthoradius-edge ratio ρ(Δt) = R/L and the normalized volume
σ(Δt) = vol(Δt)/L3, where R and L are the orthoradius and the shortest edge
length of Δt, respectively. These two values determine the shape of Δt as indicated
in the following lemma. In other words, the quality measure in the weighted mesh
is sufficient for actual quality, if the weight property [ω0] holds for sufficiently small
ω0.

Lemma 1. Assume that vertices of Δt have weight property [ω0]. If ρ(Δt) ≤ ρ1 and
σ(Δt) > σ0 for some constants ρ1 and σ0, all angles of Δt are greater than some
constant threshold.

Proof. Let pq be the longest edge of Δt. Let z be the orthosphere of Δt. Since both
p and q overlap with z, Z + P ≥ p− z and Z + Q ≥ q− z . The weight property
implies that max{P, Q} ≤ ω0 · p−q . Thus, 2Z ≥ p−z + q−z −2ω0 · p−q ≥
(1−2ω0) · p−q . Then ρ(Δt) ≤ ρ1 implies that L ≥ Z/ρ1 ≥ 1−2ω0

2ρ1
· p−q . That is,

the length of any two edges of Δt are within a constant factor. It follows that the area
of any face of Δt is O(L2). So any height of Δt is at least σ0L

3/O(L2) = Ω(L). The
sine of any dihedral angle of Δt is at least the ratio of a height to the longest edge
length. This implies that all dihedral angles of Δt are greater than some constant.
So are the angles of the triangles of Δt.

4 Algorithm

The algorithm has four distinct phases, Initialize, Conform, Refine, and Pump.
The phases Initialize, Conform, and Refine are from [CDRR04]. Some modifi-
cations are incorporated into Refine to prepare for Pump. The result of the first
three phases is a Delaunay mesh with bounded circumradius-edge ratio, except near
the small input angles. In Pump, we assign weights to sliver vertices to remove the
slivers.

The algorithm maintains a vertex set V. The edges of P are divided into subseg-
ments by inserted vertices. The subsegments inside the vertex balls are protected by
the vertex balls, so we are not concerned about them. We call a subsegment sharp
if it lies outside the vertex balls and on a sharp edge. It is non-sharp otherwise.



Weighted Delaunay Refinement for Polyhedra with Small Angles 329

A circumball of a subsegment is a finite ball with the subsegment endpoints on its
boundary. The diametric ball of a subsegment is its smallest circumball. A point p
encroaches a subsegment e if p is not an endpoint of e and lies on or inside its dia-
metric ball. This encroachment definition is stricter than usual. When p is weighted,
we say p encroaches e if π(p, z) ≤ 0 where z is the diametric ball of e.

When no subsegment is encroached by any vertex in V, the facets are decomposed
into subfacets defined as follows. For each facet F of P, consider the 2D Delaunay
triangulation of the vertices in V ∩F . The Delaunay triangles in F are its subfacets.
Thanks to the stricter definition of subsegment encroachment, the circumcenters
of subfacets lie strictly in the interior of F [CD03]. A circumball of a subfacet h is
a finite ball with the vertices of h on its boundary. The diametric ball of h is its
smallest circumball. A point p encroaches h if p lies inside its diametric ball. When
p is weighted, we say p encroaches h if π(p, z) < 0 where z is the diametric ball of h.

There are several subroutines used by our algorithm. We describe them in Sec-
tions 4.1 and 4.2 and then give the algorithm in Section 4.3. Some of these subrou-
tines are exactly same as those described in [CDRR04]. We include them here for
completeness.

4.1 Sharp vertex protection

We protect each sharp vertex u with a vertex ball centered at u with radius f(u)/4.
The distance of u from each non-adjacent input vertex, edge and facet is computed
to determine f(u). We denote the protecting ball of u by u. The points where
the boundary of u intersects edges of P are inserted into the vertex set V. We
protect a subset of u ∩ P using the SOS method of Cohen-Steiner, de Verdière
and Yvinec [SVY02] (see [BG02] for a generalized variant of this operation). At any
generic step of the algorithm, V contains vertices on the arc where a facet F incident
to u intersects the boundary of u. The segments connecting consecutive points on
such an arc form shield subsegments. Let ab be a shield subsegment. If the angle
of the sector aub on F is at least π, we insert the midpoint x on the arc between
a and b on the boundary of u ∩ F . The subsegment ab is replaced with two shield
subsegments ax and bx; see Figure 1(a). If the angle of the sector aub is less than π
and ab is encroached, we also insert x to split ab; see Figure 1(b).

u

x
b

shield
subsegmenta

u b

a
x

(a) (b)

Fig. 1. Shield subsegment and SOS splitting.

When no shield subsegment corresponds to a sector at u with angle π or more,
the shield subsegments around u create a set of shield subfacets incident to u. It
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turns out that the diametric ball of a shield subfacet lies in the union of the vertex
ball u and the diametric ball of the corresponding shield subsegment. Since u is
kept empty throughout the algorithm, it is sufficient to keep the shield subsegments
non-encroached to ensure that shield subfacets appear in DelV.

In Initialize, we only insert the points where the incident edges of u intersect
the boundary of u, and split shield subsegments that correspond to sectors with
angles π or more. The encroachment of shield subsegments is handled in the next
phase Conform.

4.2 Edge, Facet, Ball and Tetra Splitting

Edges are split in both the Conform and Refine phases to recover the edges of
P as union of Delaunay edges. Any subsegment (sharp, non-sharp or shield) that is
encroached is split using SplitE until no such segment exists.

SplitE(e)

If e is a shield subsegment, split it with SOS else insert the midpoint of e and
update DelV.

After we recover all the edges, we start splitting facets so that they appear in
DelV as union of subfacets. Standard Delaunay refinement insists that no encroached
subfacet exists. While such a condition can be enforced for subfacets on the boundary
of the bounding box B, it may never be satisfied for all subfacets. Instead, we check
only that if any subfacet does not appear in DelV. We argue that, for a polyhedron,
all subfacets must appear in DelV after sufficient but finite amount of splitting.

A subfacet h that does not appear in DelV is split using the procedure SplitF.
Certainly, h cannot be a shield subfacet since there is no encroached shield subseg-
ment when the algorithm reaches the facet splitting step.

SplitF(h)

(i) Compute the circumcenter c of h;

(ii) Let F be the facet containing h. If c does not encroach any subsegment,
insert c and update DelV. Otherwise, reject c and
1. pick a subsegment g encroached by c with preference for those in ∂F or on

F (shield subsegment), and
2. call SplitE(g).

In the Conform phase, after all the edges and facets are recovered, further
splittings of subsegments and subfacets may be performed to reduce the diametric
balls of the sharp subsegments roughly to the order of local feature sizes. In order
to avoid the computation of local feature sizes, this is achieved in a roundabout way
(see rule 3 in QMesh).

At the end of the Conform phase, for each sharp subsegment, we double the
radius of its diametric ball with the center fixed and call this a protecting ball. These
protecting balls and the vertex balls at the sharp vertices constitute the entire set
of protecting balls for the Refine phase.

Skinny tetrahedra are split in the Refine phase by inserting their circumcenters.
But we disallow the insertion of the circumcenters of skinny tetrahedra inside any
protecting ball. The reason is that once these points are allowed to be inserted, they
can cause perpetual splittings of the subsegments or subfacets. This means that some
skinny tetrahedra may remain at the end. It has been proved that all such tetrahedra
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lie close to sharp vertices or edges [CDRR04]. We also prepare for pumping in the
Refine phase. For this we assign a weight to each vertex of a sliver tetrahedron
and check if the weighted vertex threatens to destroy the input conformity. If so,
we split subsegments and subfacets further. Potentially we can choose to pump all
vertices in Pump and thus can prepare them all in Refine. But, for efficiency we
choose only a subset of tetrahedra that have a small dihedral angle, say 3◦.

4.3 WQMesh

The following algorithm WQMesh triangulates P with the claimed theoretical guar-
antees. WQMesh uses the following subroutine Encroach to test whether a point
c can be inserted and if not, return the appropriate point to be inserted.

Encroach(c)
1. If c does not encroach any subsegment or subfacet, return c.
2. If c encroaches some subsegment e, reject c and if e is a shield sub-

segment, return the point given by SOS; else return the midpoint of
e.

3. If c encroaches some subfacet, one such subfacet h contains the or-
thogonal projection of c. Reject c. If the circumcenter p of h does not
encroach any subsegment, return p; otherwise, reject p and return the
point as in case 2.

The following are the descriptions of the four phases of WQMesh(P). Recall
that P includes a bounding box B which encompasses the original polyhedron.

Initialize. Initialize V to be the set of vertices of P. Compute the vertex balls.
Insert the intersections between their boundaries and the edges of P into V. If
any shield subsegment forms a sector with angle π or more, split it with SOS.
Compute DelV.

Conform. Repeatedly apply a rule from the following list until no rule is applicable.
Rule i is applied if it is applicable and no rule j with j < i is applicable.

Rule 1. If there is an encroached subsegment e, call SplitE(e).
Rule 2. If there is a subfacet h ⊂ B that is encroached, or if h ⊂ B and

h does not appear in DelV, call SplitF(h).
Rule 3. Let s be a sharp subsegment on an edge e. If the midpoint of s

encroaches a subsegment or subfacet h, where h and e are contained
in disjoint elements of P, split h accordingly using SplitE(h) or
SplitF(h).

At the end of Conform, we double the sizes of the diametric balls of sharp
subsegments. These expanded balls and the vertex balls are the protecting balls.
The sharp subsegments may be split further in the next phase, but the locations
and sizes of these protecting balls do not change.
We call a subfacet guarded if its diametric ball lies inside some protecting ball.

Refine. Repeatedly apply a rule from the following list until no rule is applicable.
Rule i is applied if it is applicable and no rule j with j < i is applicable. The
parameter ρ0 > 2/(1− tan(π/8)) is a constant chosen a priori.

Rule 4. If there is an encroached subsegment e, call SplitE(e).
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Rule 5. If there is a non-guarded subfacet h that is encroached or
a guarded subfacet h that does not appear in DelV, then call
SplitF(h).

Rule 6. Assume that there is a tetrahedron with circumradius-edge ra-
tio exceeding ρ0. Let z be its circumcenter. If z does not lie on
or inside any protecting ball, then compute p :=Encroach(z) and
insert p into V.

Rule 7. Take a vertex v of a tetrahedron Δt with a dihedral angle of
3◦ or less. Let v be the weighted vertex v with weight L2

v/9 where
Lv is the length of the shortest incident edge of v. We ignore v
if v encroaches the two times expansion of some protecting ball.
Otherwise, we take action only in the following cases: (i) if v en-
croaches some non-guarded subfacet, we split by SplitF the one
that contains the projection of v; (ii) if v makes some guarded sub-
facet disappear from the 3D weighted Delaunay triangulation, we
split the subfacet by SplitF.

We always maintain an unweighted Delaunay triangulation in Refine and v is
used only for checking encroachments. Notice that, as claimed in the introduc-
tion, the weight pumping depends on nearest neighbor distances as opposed to
local feature sizes in [CD03].

Pump. We examine all vertices v incident on a tetrahedron with a dihedral angle of
3◦ or less such that v does not encroach the two times expansion of any protect-
ing ball. For each such vertex v, we assign to v the weight in the interval [0, L2

v/9]
that maximizes the minimum dihedral angle of the tetrahedra incident to v. We
maintain the weighted Delaunay triangulation during the weight pumping. We
claim that no pumped vertex encroaches upon any weighted-subsegment and
weighted-subfacet.
Note: We used 3◦ as a threshold on the dihedral angles of tetrahedra to select
vertices to pump. The choice of 3◦ is dictated by our experiments which shows
that in most cases pumping eliminates tetrahedra with dihedral angles smaller
than 3◦. In theory, we show that pumping eliminates all tetrahedra with dihedral
angle below a positive threshold. Although this threshold is much lower than 3◦,
the algorithm as stated works. Only that, sometimes tetrahedra with dihedral
angles between the theoretical threshold and 3◦ may not get eliminated.

Let M denote the unweighted Delaunay mesh at the end of Refine. Let U denote
the set of vertices of tetrahedra inM with circumradius-edge ratio greater than ρ0. It
has been proved that all vertices in U are close to a small input angle [CDRR04]. Our
main result is that all sliver vertices left after Pump also satisfies similar property.
We say that a vertex v is in the E-neighborhood of U if v is within E edges in
M from some vertex of U . We say that Δt is in the E-neighborhood of U if some
vertex of Δt is in the E-neighborhood of U . Recall that ρ(Δt) and σ(Δt) denote
the orthoradius-edge ratio and the normalized volume of Δt, respectively. The main
theorem we prove is:

Theorem 1. There are constants ρ1, σ0, E > 0 such that for every tetrahedron Δt
in the output mesh of WQMesh, ρ(Δt) ≤ ρ1 and σ(Δt) > σ0 unless Δt is in the
E-neighborhood of U or Δt is within distance O(f(x)) from some point x on some
sharp edge.
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5 Analysis

In this section, we first prove that the first three phases terminate with a graded
Delaunay mesh and all tetrahedra have bounded circumradius-edge ratio, except
those near small input angles. Then we show that the phase Pump eliminates slivers,
except those that are near skinny tetrahedra or the protecting balls.

The main purpose of the bounding box B is to disallow any point to be inserted
outside B so that one can claim termination by applying a packing argument within
a bounded domain. The set of points, say P , that are inserted or rejected while
conforming to B maintain a lower bound on their distances to all other existing
points by the arguments in [CD03] because all angles of B are π/2. In the analysis
we skip explicit arguments about P and focus on the set of points, say Q, that are
inserted or rejected for conforming to the edges and facets of the original polyhedron.
Of course, we do not lose any generality by doing so as the lower bounds on distances
for P are dominated by those for Q.

5.1 Termination and conformity

In this section, we inductively prove that the inter-vertex distances remain above
certain thresholds in the first three phases. The inductive argument makes use of
a predecessor relation defined as follows. Let x be a vertex inserted or rejected by
WQMesh. The predecessor of x is an input vertex or a vertex inserted or rejected by
WQMesh. If x is a vertex of P or a vertex inserted during Initialize, its predecessor
is undefined. Otherwise, the predecessor p is defined as follows.

• Suppose that x splits a subsegment (shield or non-shield) or a subfacet h. Let
B be the diametric ball of h.
If B contains some vertex in V, p is the encroaching vertex nearest to x. If B is
empty and WQMesh is going to reject a vertex inside B for encroaching h, p
is that vertex. Otherwise, B is empty and the encroachment must be due to a
weighted vertex outside the ball in rule 7. Then p is that weighted vertex.

• If x is the circumcenter of a skinny tetrahedron Δt, then p is one of the endpoints
of the shortest edge of Δt. Between the two endpoints of the shortest edge, p is
the one that appears in V later.

It is still possible that x has no predecessor. This happens when x is inserted to split
a subsegment in rule 3. When a subfacet is split by x in rule 3, x may or may not
have a predecessor depending on whether the diametric ball is empty or not.

The neighbor radius rx of x is the distance from x to its nearest neighbor in the
current V when x is inserted or rejected. So if x is an input vertex, then rx ≥ f(x).
The following result shows that rx = Ω(f(x)) and that the protecting balls are not
too small at the end of Conform.

Lemma 2. [CDRR04] At the end of Conform, there are constants μ1, μ2 > 0 such
that

(i) For each vertex x ∈ V, rx ≥ μ1f(x).
(ii) For any point z on a sharp subsegment, a ball centered at z with radius μ2f(z)

lies inside some protecting ball.
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So we focus on analyzing Refine. We will show by induction that the rules 4–7
in Refine preserve the following property. Let ω0 ∈ [0, 1/3) be a constant to be
defined later.

Vertex gap property: For each vertex p ∈ V, the nearest neighbor dis-
tance of p is at least ω0f(p) throughout Refine.

We need the following result, Lemma 3, about Refine. It is the same as
Lemma 4.16 in [CDRR04](extended version). The original proof almost works here
but some change is needed due to our extension of Refine to prepare for Pump.
The only case that is not handled in the original proof is that the weighted en-
croachment in rule 7 may split a guarded subfacet h, although h belongs to the 3D
unweighted Delaunay triangulation. If we can argue that the circumradius of h is
Ω(f(x)) where x is its circumcenter, the original argument goes through. We can
invoke Lemma 4.10 in [CDRR04] to show that the circumradius of h is Ω(f(x)),
provided that we can find a circumball B of h such that B contains a vertex u on
some element of P, u and the center z of B lie on different sides of the plane of
h, and radius(B) ≥ cf(x) − x − z for some constant c > 0. Since some weighted
vertex v makes h disappear from the 3D weighted Delaunay triangulation in rule 7
and v is relatively far from any protecting ball, it can be checked that such a ball
B exists. Thus Lemma 3 holds.

Lemma 3. Assume that no subsegment is encroached by a vertex. Let x be the cir-
cumcenter of a subfacet inserted or rejected during Refine and p be its predecessor.
If p is a vertex in V lying on some element of P, then rx = Ω(f(x)).

Lemma 4. Let x be a vertex inserted or rejected during Refine. Assume that x
splits a subfacet h and its predecessor p is defined. If p does not encroach h, then
p− x ≥ min{μ3f(x), μ4rp} for some constants μ3, μ4 > 0.

Proof. Since p does not encroach h, the diametric ball of h centered at x is empty.
Moreover, the encroachment happens in rule 7 when p is pumped. So p ∈ V. By
rule 7, p lies outside all protecting balls and h is a non-guarded subfacet. Go back
to the time t when p was first inserted into V. Let F be the input facet containing
h.

Let abc be the subfacet on F that contains the projection of p at that time. If p
lies outside the diametric ball of abc, it can be shown that the distance from p to F is
at least rp/

√
2 [CD03]. So is p−x . If p lies inside the diametric ball of abc, then p lies

on some input element F . Otherwise, p would be the circumcenter of a tetrahedron
and be rejected by the algorithm. If F is disjoint from F , then p − x ≥ f(x).
Otherwise, F and F meet at a sharp vertex or a sharp edge. Let z be the point in
F ∩F closest to p. Since p lies outside all protecting balls, Lemma 2(ii) implies that
p− z ≥ μ2f(z). The Lipschitz condition implies that p− z ≥ μ2f(p)/(1 + μ2).

Thus, p − x ≥ p − z sin φm ≥ μ2 sin φmf(p)/(1 + μ2). Invoking the Lipschitz
condition again yields p− x ≥ μ2 sin φmf(x)/(1 + μ2 + μ2 sin φm).

Now we can show that the splitting vertex x triggered by the weighted encroach-
ment in rule 7 has neighbor radius Ω(f(x)), if the predecessor of x is outside the
diametric ball centered at x.

Lemma 5. Suppose that the vertex gap property is satisfied. Let x be a vertex that
splits a subfacet h. Assume that its predecessor p is defined. If p lies outside the
diametric ball of h, then rx ≥ μ5f(x) for some constant μ5 > 0.
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Proof. Since p is the predecessor of x but p does not encroach h, the encroachment
occurs in rule 7 when p is pumped. Let Lp be the nearest neighbor distance of p at
that time.

We claim that Lp ≤ 2 p−x . If the claim is false, the ball B centered at p with
radius Lp contains x. Moreover, the distance from x to the boundary of B is greater
than Lp − p− x ≥ Lp/2. By the definition of Lp, B is empty. So the vertices of h
lies outside B, which implies that the diametric ball of h (centered at x) has radius
at least Lp/2 > p−x . But then p must encroach h, contradicting our assumption.
This proves the claim.

By the weighted encroachment, r2
x + L2

p/9 ≥ p−x 2. So our claim implies that

rx ≥
√

5
3

p − x . By Lemma 4, p − x ≥ min{μ3f(x), μ4rp}. If p − x ≥ μ3f(x),

then rx ≥
√

5μ3
3

f(x). If p − x ≥ μ4rp, then p − x ≥ μ4Lp ≥ μ4ω0f(p) by the
vertex gap property. Thus, f(x) ≤ f(p) + p− x = O( p− x ) = O(rx).

We are ready to apply induction to prove the vertex gap property holds through-
out Refine and to bound the inter-vertex distances from below by the local feature
sizes.

Lemma 6. Let x be a vertex such that x exists in V before the invocation of Refine
or x is inserted or rejected by WQMesh during Refine. The following invariants
hold.

(i) rx ≥ f(x)/C for some constant C > 0.
(ii) For any other vertex y currently in V, x− y ≥ max{f(x)/C, f(y)/(1 + C)}.
(iii) Assume that ω0 = 1/(1 + C). If x is inserted, the vertex gap property holds

afterwards.

Proof. By Lemma 2(i), if x exists in V before the invocation of Refine, then rx ≥
μ1f(x). Assume that x is inserted or rejected during Refine. If x splits a subsegment,
we say x has type 4; if x splits a subfacet, x has type 5; and if x splits a tetrahedron,
x has type 6. We prove a stronger statement by induction: if x has type i, then
rx ≥ f(x)/Ci for some constants C4 > C5 > C6 > 1. Let p be the predecessor of x.

Case 1: x has type 4. Let ab be the subsegment split by x. Since only subfacets
are split in rule 7, p must be unweighted and p encroaches ab. If p has type 4,
then p must be inserted and it is a subsegment endpoint. In this case, it has
been proved that rx ≥ μ6f(x) for some constant μ6 > 0 [CDRR04]. Suppose
that p has type 5 or 6. It has been shown [CDRR04] that rx ≥ rp/β1 and

rx ≥ p − x /β2, where β1 =
√

2
1−tan(π/8)

and β2 = 1+tan(π/8)
1−tan(π/8)

. Since C5 > C6,

the induction assumption implies that rp ≥ f(p)/C5 regardless of the type of p.

Thus f(x)
rx

≤ β1C5 + β2.
So the inequalities β1C5 + β2 ≤ C4 and C4 ≥ 1/μ6 should hold.

Case 2: x has type 5. If p is a vertex lying on some element of P, then by Lemma 3,
rx ≥ μ7f(x) for some constant μ7 > 0. Otherwise, p must have type 6. Let h be
the subfacet split by x. There are two cases.

Case 2.1: p encroaches h. In this case, it has been shown p is not a vertex
in V [CDRR04]. Therefore, we can infer that WQMesh tries to insert p
to split a tetrahedron but then it rejects p for encroaching h. And the
diametric ball of h is empty. Therefore, rx ≥ rp/

√
2 and rx ≥ p − x .

Thus, f(x)
rx

≤ √
2C6 + 1.
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Case 2.2: If p does not encroach h, p encroaches h in rule 7. And the diametric
ball of h is empty. Lemma 5 implies that rx ≥ μ5f(x).

So the inequalities
√

2C6 + 1 ≤ C5 and C5 ≥ max{1/μ5, 1/μ7} need to hold.
Case 3: x has type 6. In this case, it has been proved that either rx ≥ ρ0μ1

ρ0μ1+1
f(x)

or f(x)
rx

≤ f(p)
ρ0·rp

+1 ≤ C4
ρ0

+1 [CDRR04]. So the inequalities C4/ρ0 +1 ≤ C6 and

C6 ≥ ρ0μ1+1
ρ0μ1

need to hold.

This finishes the case analysis. To satisfy all the above inequalities, we set C6 to be
the maximum of ρ0+β1+β2

ρ0−
√

2β1
, 1

μ5
, 1

μ6
, 1

μ7
, and ρ0μ1+1

ρ0μ1
. Then we set C5 =

√
2C6 + 1

and C4 =
√

2C5 + 1. Notice that Ci > 0 for i = 4, 5, 6 since ρ0 >
√

2β1 = 2/(1 −
tan(π/8)) as chosen by WQMesh. Finally, we set C = max{C4, 1/μ1}. This proves
invariant (i).

Consider invariant (ii). For any vertex y that appears in V currently, x− y ≥
f(x)/C. Since f(x) ≥ f(y)− x−y , we have x−y ≥ f(x)/C ≥ f(y)/C− x−y /C.
This implies that x− y ≥ f(y)/(1 + C).

Consider invariant (iii). Invariant (ii) implies that for any vertices a, b ∈ V,
a− b ≥ f(a)/(1+C). The choice of the values of C and ω0 enforce that f(a)/(1+

C) = ω0f(a). This proves that the vertex gap property holds.

By Lemma 6 and a standard packing argument, WQMesh must terminate.
Since no protecting ball is encroached by any weighted vertex at the end, the non-
shield subsegments appear as weighted Delaunay edges in the end, i.e., the input
edges are recovered. The guarded subfacets and subfacets incident to sharp vertices
are explicitly kept as weighted Delaunay by WQMesh. The proof of Theorem 7.2
in [CD03] can be used to show that the other subfacets are recovered as the union
of weighted Delaunay triangles. Hence, WQMesh terminates with a conforming
weighted Delaunay mesh. It has been proved [CDRR04] that at the end of Refine,
the vertices of any tetrahedra with circumradius-edge ratio exceeding ρ0 are within
distance O(f(x)) from some point x on some sharp edge.

5.2 Sliver exudation in Pump

Let M denote the unweighted Delaunay mesh at the end of Refine. Let M[ω0]
denote a weighted Delaunay mesh obtained after assigning arbitrary weights to the
vertices of M such that the weight property [ω0] holds. So M[ω0] may be the mesh
obtained at the end of Pump, but there are many other possibilities for M[ω0] as
well. Note that M and M[ω0] share the same vertex set. Let U denote the set of
vertices of tetrahedra in M with circumradius-edge ratio greater than ρ0. In this
section we complete the proof of Theorem 1.

We need the following result from Talmor’s thesis [T97]. We have rephrased it to
fit our presentation. Given any vertex p in M, we use Vp to denote its Voronoi cell
in the unweighted Voronoi diagram. We say that Vp is ρ0-round if the circumradius-
edge ratio of all tetrahedra in M incident to p are bounded by ρ0. In fact, if Vp is
ρ0-round, it has a bounded aspect ratio. It is known that the lengths of adjacent
edges in M differ by a constant factor L = 22m−1ρm−1

0 , where m = 2/(1 − cos η
4
)

and η = 1
2

arctan(2ρ0 − 4ρ2
0 − 1) [CDET99]. Let Bp be a ball centered at p with

radius ρ0L ·N(p).
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Lemma 7. Let xz be a line segment lying inside p∈V Vp ∩Bp. Let z be the sphere
centered at z with radius x − z . There exists a constant K > 0 such that if z is
empty and xz intersects ρ0-round Voronoi cells only, then xz intersects at most K
Voronoi cells and N(z) ≤ C ·N(x) for some constant C > 0.

Recall the definition of E-neighborhood from section 4.3.

Lemma 8. There exists a constant ρ1 > 0 such that any tetrahedron Δt in M[ω0]
with orthoradius-edge ratio exceeding ρ1 is in the K-neighborhood of U where K is
given by Lemma 7.

Proof. Let z be the orthosphere of some tetrahedron Δt in M[ω0]. Let qr be the
shortest edge of Δt. Let x be the intersection point qz∩z. Note that x lies inside q and
q lies inside Vq. By assumption, z lies inside Conv V, the convex hull of V. So xz lies
inside Conv V by convexity. It has been proved that Vp ∩ConvV ⊆ Vp ∩Bp [CD03].
So xz ⊆ p∈V Vp ∩ Bp. Note that z is empty. Walk from x towards z. Stop at z
or when we have encountered K Voronoi cells (including Vq). If we encounter a
Voronoi cell that is not ρ0-round, the site v owning the cell is incident to some
tetrahedron in M with circumradius-edge ratio exceeding ρ0. That is, v ∈ U . So q
is in the K-neighborhood of U . Otherwise, Lemma 7 says that we must reach z and
Z ≤ N(z) ≤ C · N(x), where Z is the radius of z. The Lipschitz condition implies
that N(x) ≤ N(q) + q − x ≤ N(q) + ω0N(q). Since N(q) ≤ q − r , we have
N(x) ≤ (1 + ω0) · q − r . Thus Z ≤ C(1 + ω0) · q − r and the lemma is true for
ρ1 = C(1 + ω0).

Let G be the graph consisting of the edges in all possible meshes M[ω0]. Let p
be a vertex in G. It has been proved that [CD03] if both p and its neighbors are
not incident to any tetrahedron Δt with orthoradius-edge ratio ρ(Δt) > ρ1 in any
M[ω0], then deg(p) ≤ δ0 for some constant δ0. Thus, by Lemma 8, the following
result holds.

Lemma 9. For any vertex p of G, if p is not in the (K +1)-neighborhood of U , then
deg(p) ≤ δ0 for some constant δ0.

We are now ready to analyze the effects of weight assignment in Pump. Let σ0

be a constant to be specified later. Let pqrs be a tetrahedron with σ(pqrs) ≤ σ0

that is not in the (K +1)-neighborhood of U . Some vertices may have been assigned
some weights already. Suppose that p is pumped with weight P 2 from the interval
[0, L2

p/9]. It has been proved [CD03] that for pqrs to remain weighted Delaunay, P 2

must be at most kσ0L
2
p for some constant k. That is, pqrs define a forbidden weight

interval for p and the length of this weight interval is at most kσ0L
2
p. By Lemma 9,

there are no more than δ3
0 tetrahedra incident to p throughout the pumping. Thus

the total length of forbidden weight intervals for p is at most kδ3
0σ0L

2
p. Since the

weight of p is chosen from [0, L2
p/9], if σ0 < 1/(9kδ3

0), p can be assigned a weight
such that p is not incident to any tetrahedron Δt with σ(Δt) ≤ σ0.

It may be the case that we abort the pumping of p because it encroaches the
two times expansion of some protecting ball. A vertex ball x has radius f(x)/4.
By Lemma 2(ii), a protecting ball with center x has radius Ω(f(x)). Thus there is
some constant μ > 0 such that μf(x) + Lp/3 ≥ p − x . It has been shown that
Lp ≤ 2

√
2f(p) (Lemma 7.5 [CD03]). Thus μf(x) + 2

√
2f(p)/3 ≥ p − x . By the
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Lipschitz condition, we have (μ + 2
√

2f(x)/3) + (2
√

2/3) · p− x ≥ p− x , which

yields p− x ≤ 3μ+2
√

2

3−2
√

2
f(x).

This completes the proof of all claims in Theorem 1.

6 Experimental results and conclusions

We have seen that WQMesh is a modification of QMesh [CDRR04] (with the
step Refine modified) and an added step for sliver removals. Therefore, we took
an implementation of QMesh [soft] and modified it to WQmesh. This required
adapting QMesh to weighted Delaunay triangulations. We used CGAL [cgal] for
this weighted Delaunay triangulation.

Figure 4 shows the results. Although we proved a bound of 2/(1− tan(π/8)) for
the circumradius-edge ratio, we do not know the optimal bound on ρ0 which the
algorithm can tolerate. We took ρ0 = 2.2 for the experiments because earlier work
proved the guarantees for ρ0 = 2 [PW04, Shew98].

We experimented with the performance of WQMesh on a number of data sets.
We made several observations summarized in Table 2 and in the bar graph of Fig-
ure 2. Table 2 shows the relevant data about input and output. Observe that most
of the tetrahedra have good circumradius-edge ratio. For measuring slivers we put
a threshold of 3◦ on dihedral angles, i.e., a tetrahedron is declared sliver if its
circumradius-edge ratio is no more than 2.2, but has a dihedral angle less than
3◦. One should note that, in theory, the sliver exudation step can only eliminate
slivers with abysmally small dihedral angles. However, our experiments show that
it is more effective than the theory confirms. The eighth column of Table 2 shows
the number of slivers in different dihedral angle ranges remaining in the output.
The distribution of minimum angles (both dihedral and face) for all tetrahedra are
shown in Figure 2. It is clear that over 95% of the tetrahedra have minimum angle
more than 3◦ while 90% of them have minimum angles more than 10◦.

Slivers with a dihedral angle less than 3◦ and tetrahedra with circumradius-edge
ratio greater than 2.2 are shown in the second column of Figure 4. All of them lie
near some small input angle. Third column of the figure shows the triangulation of
the input polyhedron.

Table 1. Effect of sliver exudation.

model # slivers before # slivers after
exudation exudation

Simplebox 6 0

Anchor 9 0

Tower 9 2

Hole 14 0

Hammer 30 6

Pawn 183 16

In spite of the abysmally small angle guaranteed by the sliver exudation step in
theory, perhaps its most convincing advantage is its ability to remove slivers with
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Table 2. Relevant input and output data.

model # input # sharp #points # tetrahedra with R/l # tets(min dihed. ang.)
points elements inserted 0.6-1.4 1.4-2.2 > 2.2 0-3 3-5 5-10

Anchor 28 27 981 2324 1045 35 0 15 48

Box 32 30 1044 2468 832 41 0 15 42

Wiper 72 58 979 1895 573 19 0 4 43

Blade 36 32 367 777 212 3 0 4 16

Tower 33 59 512 969 399 15 2 1 41

Fig. 2.

dihedral angles much larger than the ones predicted by theory. Table 1 shows the
number of slivers remaining at the end of QMesh which does not have any sliver
removal step, and the number of slivers after WQMesh. The data clearly shows
that slivers are drastically reduced by the sliver exudation step incorporated in
WQMesh. Figure 3 also confirms this conclusion.

Of course, from practical viewpoint it remains open if there is any provable
method that can produce guaranteed quality meshing of polyhedra with a sufficiently
large lower bound on angles. Also, the case for non-polyhedral inputs remains open.
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Fig. 3. Pawn: input (left), slivers before Pump (middle), few slivers survive Pump
(right). Most of the input face angles close to π

2
on the boundary are evaluated as

acute for numerical tolerances. All surviving slivers are near some such acute angles.
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